3.78 \(\int \frac{\text{sech}^2(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx\)

Optimal. Leaf size=36 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{\sqrt{b} d \sqrt{a+b}} \]

[Out]

ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]]/(Sqrt[b]*Sqrt[a + b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0605388, antiderivative size = 36, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {4146, 208} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{\sqrt{b} d \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^2/(a + b*Sech[c + d*x]^2),x]

[Out]

ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]]/(Sqrt[b]*Sqrt[a + b]*d)

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{sech}^2(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{\sqrt{b} \sqrt{a+b} d}\\ \end{align*}

Mathematica [A]  time = 0.0785563, size = 36, normalized size = 1. \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{\sqrt{b} d \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^2/(a + b*Sech[c + d*x]^2),x]

[Out]

ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]]/(Sqrt[b]*Sqrt[a + b]*d)

________________________________________________________________________________________

Maple [B]  time = 0.043, size = 107, normalized size = 3. \begin{align*}{\frac{1}{2\,d}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ){\frac{1}{\sqrt{b}}}{\frac{1}{\sqrt{a+b}}}}-{\frac{1}{2\,d}\ln \left ( -\sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}-\sqrt{a+b} \right ){\frac{1}{\sqrt{b}}}{\frac{1}{\sqrt{a+b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^2/(a+b*sech(d*x+c)^2),x)

[Out]

1/2/d/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))-1/2/
d/b^(1/2)/(a+b)^(1/2)*ln(-(a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)-(a+b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.18705, size = 1065, normalized size = 29.58 \begin{align*} \left [\frac{\log \left (\frac{a^{2} \cosh \left (d x + c\right )^{4} + 4 \, a^{2} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + a^{2} \sinh \left (d x + c\right )^{4} + 2 \,{\left (a^{2} + 2 \, a b\right )} \cosh \left (d x + c\right )^{2} + 2 \,{\left (3 \, a^{2} \cosh \left (d x + c\right )^{2} + a^{2} + 2 \, a b\right )} \sinh \left (d x + c\right )^{2} + a^{2} + 8 \, a b + 8 \, b^{2} + 4 \,{\left (a^{2} \cosh \left (d x + c\right )^{3} +{\left (a^{2} + 2 \, a b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) - 4 \,{\left (a \cosh \left (d x + c\right )^{2} + 2 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a \sinh \left (d x + c\right )^{2} + a + 2 \, b\right )} \sqrt{a b + b^{2}}}{a \cosh \left (d x + c\right )^{4} + 4 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + a \sinh \left (d x + c\right )^{4} + 2 \,{\left (a + 2 \, b\right )} \cosh \left (d x + c\right )^{2} + 2 \,{\left (3 \, a \cosh \left (d x + c\right )^{2} + a + 2 \, b\right )} \sinh \left (d x + c\right )^{2} + 4 \,{\left (a \cosh \left (d x + c\right )^{3} +{\left (a + 2 \, b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a}\right )}{2 \, \sqrt{a b + b^{2}} d}, \frac{\sqrt{-a b - b^{2}} \arctan \left (\frac{{\left (a \cosh \left (d x + c\right )^{2} + 2 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a \sinh \left (d x + c\right )^{2} + a + 2 \, b\right )} \sqrt{-a b - b^{2}}}{2 \,{\left (a b + b^{2}\right )}}\right )}{{\left (a b + b^{2}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*log((a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*co
sh(d*x + c)^2 + 2*(3*a^2*cosh(d*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*
x + c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c) - 4*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c)
 + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(a*b + b^2))/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*si
nh(d*x + c)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*
x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x + c) + a))/(sqrt(a*b + b^2)*d), sqrt(-a*b - b^2)*arctan(1/2*(a*co
sh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(-a*b - b^2)/(a*b + b^2))/(
(a*b + b^2)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{sech}^{2}{\left (c + d x \right )}}{a + b \operatorname{sech}^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**2/(a+b*sech(d*x+c)**2),x)

[Out]

Integral(sech(c + d*x)**2/(a + b*sech(c + d*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.15064, size = 63, normalized size = 1.75 \begin{align*} \frac{\arctan \left (\frac{a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt{-a b - b^{2}}}\right )}{\sqrt{-a b - b^{2}} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="giac")

[Out]

arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/(sqrt(-a*b - b^2)*d)